УДК [622.7-17:662.5]:519.876.5

Амосов Павел Васильевич

кандидат технических наук, старший научный сотрудник, Горный институт КНЦ РАН, 18429, г. Апатиты, ул. Ферсмана, 24 e-mail: <u>vosoma@goi.kolasc.net.ru</u>

Бакланов Александр Анатольевич

доктор физико-математических наук, профессор, главный научный сотрудник, Институт проблем промышленной экологии Севера КНЦ РАН, 18409, г. Апатиты, Академгородок, 14a; Danish meteorological institute, Denmark, Copenhagen e-mail: alb@dmi.dk

ОЦЕНКА ВЕРТИКАЛЬНОГО ПОТОКА МАССЫ ПЫЛИ НА ХВОСТОХРАНИ-ЛИЩЕ НА БАЗЕ СХЕМЫ «DEAD»

Аннотация:

Обсуждается методический подход к оценке вертикального потока массы пыли хвостохранилища. Подход базируется на схеме «DEAD» и обработке результатов численного моделирования аэродинамических параметров двухмерной CFD-модели района «хвостохранилище АНОФ-2 – г. Апатиты» при максимальной проектной высоте хвостохранилища. Значения интенсивности пыления получены при вариации скорости ветра на референтной высоте 10 м в интервале от 5 до 23 м/с. Расчетное значение интенсивности пыления при скорости трения 0,6 м/с соответствует величине максимальной сдуваемости пыли, используемой специалистами ЗАО «Механобр Инжиниринг» в проекте реконструкции хвостохранилища до максимальной высотной отметки.

Ключевые слова: интенсивность пыления, динамическая скорость, численное моделирование, хвостохранилище Amosov Pavel V. PhD (Tech.), senior researcher, Mining Institute KSC RAS,

184209, Apatity, Fersman st., 24 e-mail: vosoma@goi.kolasc.net.ru

Baklanov Alekxandr A.

Doctor of physical and mathematical sciences, professor, leading researcher, The Institute of the North Industrial Ecology Problems KSC RAS, 184209, Apatity, Akademgorodok, 14a; Danish meteorological institute, Denmark, Copenhage e-mail: <u>alb@dmi.dk</u>

EVALUATION OF VERTICAL FLOW OF TAILING DUST MASS IN TERMS OF "DEAD" SCHEME

Abstract:

The paper discusses a methodical approach to evaluation a vertical flow of tailing dust mass. The approach is based on the «DEAD» scheme and processing numerical modeling results of aerodynamic parameters of the two-dimensional 2D CFD-model "ANOF-2 tailing - Apatity region" at the maximum designed height of the tailing. Dusting intensity values have been obtained at wind velocity variation on reference height 10 m in the 5 - 23 m/sec interval. The calculated value of dusting intensity at 0,6 m/sec friction velocity corresponds to a value of maximum dust blowing used by specialists of "Mechanobr Engineering" CJSC in the tailing reconstruction project up to a maximum height level.

Key words: intensity of dusting, dynamic velocity, numerical modeling, tailing

При математическом моделировании процессов пыления хвостохранилищ для задания мощности плоскостного источника пыли при сильных ветрах большое практическое значение имеет зависимость вертикального потока массы (ВПМ) пыли F. от динамической скорости потока u_* .

Предлагается к применению известная схема DEAD (Dust Entrainment And Deposition) [1-3], в которой мобилизация описывается через динамическую скорость u_* (скорость трения), являющуюся функцией скорости ветра, размера шероховатости и устойчивости атмосферы. Горизонтальный поток массы G_p частиц пыли класса крупности pзависит от превышения ветровой скорости трения над пороговой скоростью трения

№3, 2015 г.

ветра u_*^{p} . Горизонтальный поток массы для частиц пыли класса крупности $p(G_p)$ может быть вычислен по формуле [4]:

$$G_{p} = c \frac{\rho_{a}}{g} u_{*}^{3} \left(1 - \left(\frac{u_{*}^{tp}}{u_{*}} \right)^{2} \right) \left(1 + \frac{u_{*}^{tp}}{u_{*}} \right), \tag{1}$$

где c – константа; ρ_a – плотность воздуха, кг/м³; u_* – динамическая скорость, м/с; u_*^{tp} – пороговая скорость, м/с; g – ускорение свободного падения, м/с². В работе [5], которая имеет очень высокий показатель цитируемости, значение константы c рекомендовано выбрать равной 2,61.

Значение динамической скорости вычисляется с помощью известного соотношения [6]

$$u_* = u_{10} \frac{\kappa}{\lg(H_{10}/z_0)},\tag{2}$$

где нижний индекс 10 (H_{10}) отнесем к высоте +10 м над пылящей поверхностью u_{10} , м/с; z_0 – параметр шероховатости, м; κ – постоянная Кармана.

Значения пороговой скорости u_*^{p} для пыли класса крупности p до 70 мкм в диаметре, вычисленные по методике [5], представлены в табл. 1. Сходимость результатов с графической зависимостью указанной работы отличная.

Таблица 1

Значения пороговой скорости в зависимости от диаметра частиц пыли

Диаметр, мкм	Пороговая скорость, м/с	
5	0,951	
15	0,420	
25	0,295	
35	0,243	
45	0,218	
55	0,206	
65	0,201	

Переход к ВПМ массы выполняется посредством соотношения $F = \alpha G$ [2], где коэффициент пропорциональности имеет размерность см⁻¹, а его значение зависит от содержания глины в пылящей почве [5, 7]. Например, при нулевом содержании глины $\alpha = 10^{-6}$ см⁻¹.

Объектом научного интереса авторов (методом численного моделирования) являются процессы пыления и переноса мультидисперсной примеси на хвостохранилище АНОФ-2, расположенное вблизи г. Апатиты и доставляющее жителям определенный дискомфорт. На рис. 1 представлена схема модели, которая авторами принимается для оценки величины вертикального потока массы частиц.

Для определения интенсивности пыления в качестве оценочного приближения предлагается использовать указанную выше зависимость. Если на входной границе модели имеем значение скорости ветра u_{ref} на высоте +10 м над основанием модели, то задаем логарифмический профиль скорости на входной границе (шероховатость принимается на уровне 0,05 м) и выполняем расчет аэродинамики на базе стандартной $(k - \varepsilon)$ -модели. Далее обрабатываем расчетные аэродинамические параметры: вдоль пунктирной линии (+10 м над поверхностью хвостов) выполняем операцию осреднения горизонтальной компоненты скорости, т. е. получаем u_{10} . Используя зависимость (2), получаем осредненное значение динамической скорости на высоте пыления.

Рис. 1 – Схема модели под обоснование методики определения интенсивности пыления (ветер дует слева направо)

Апробация подхода выполнена на базе двухмерной CFD-модели (программный код COMSOL). Геометрические размеры модели следующие: вдоль горизонтальной оси 15000 м, вдоль вертикальной оси 1000 м. Практически геометрия модели повторяет геометрию центрального сечения (вдоль оси Х) трехмерной модели «хвостохранилище АНОФ-2 – г. Апатиты», реализованной авторами на предыдущем этапе исследований и подробно описанной в публикациях [8 – 13]. В рассмотренной ситуации высота пылящих поверхностей дамбы принята равной 74 м (рис. 2), что соответствует максимальной проектной высоте 200 м хвостохранилища.

Рис. 2 – Укрупненный фрагмент геометрии модели района хвостохранилища АНОФ-2

Как и ранее [8 - 13], расчет аэродинамических параметров выполнен на базе стандартной $(k - \varepsilon)$ -модели. При этом скорость ветра на высоте 10 м от основания модели была проварьирована по значениям: 5, 8, 11, 14, 17, 20 и 23 м/с. В результате имеем для последующей обработки 7 распределений аэродинамических параметров.

В соответствии с предложенным выше подходом для всех 7 вариантов построены пространственные распределения горизонтальной компоненты скорости на высоте +10 м над пылящей поверхностью. Через стандартную процедуру осреднения вдоль оси X (от 580 до 5450 м) получены соответствующие значения u_{10} и далее последовательно величины динамических скоростей u_* и ВПМ F_p для частиц пыли крупностью 35 мкм. Результаты обработки и расчетов сведены в табл. 2.

Как видно из данных табл. 2, диапазон изменения интенсивности пыления охватывает всего 2 порядка от 10^{-4} до $10^{-2}~{\rm kr/m^{2}}$ с при изменении динамической скорости от 0,6 до 2,9 м/с.

Проверка на разумность полученных значений выполнена по данным отчета «Реконструкция хвостохранилища до отметки 200 м: проектная документация. Раздел 8 «Перечень мероприятий по охране окружающей среды», посвященного реконструкции хвостохранилища АНОФ-2 до высотной отметки 200 м. Специалисты ЗАО «Механобр Инжиниринг» используют показатель – «максимальная удельная сдуваемость пыли». В своих оценках авторы указанного отчета используют значение 5,29·10⁻⁶ кг/м² с, что в приведенной выше зависимости (1) [4] отвечает значению динамической скорости несколько меньше 0,6 м/с. На взгляд авторов, есть определенные основания утверждать, что предлагаемый методический подход позволит получить достаточно объективные значения интенсивности пыления при высоких скоростях ветра.

Таблица 2

Расчетные значения осредненной скорости u_{10} , динамической скорости u_* на высоте пыления и вертикального потока массы частиц F_p для схемы DEAD (при вариации референтной скорости ветра)

Референтная скорость ветра	Осредненная скорость	Динамическая	ВΠМ ,
${\it u}_{\it ref}$, м/с	<i>u</i> ₁₀ , м/с	скорость u_* , м/с	кг/м ^{2.} С
5	8,246	0,623	0,9769.10-5
8	13,19	0,996	0,3972.10-4
11	18,14	1,370	0,1007.10-3
14	23,09	1,743	0,2033-10-3
17	28,04	2,117	0,3584 10-3
20	32,98	2,490	0,576610-3
23	37,93	2,863	0,8688.10-3

Таким образом, на базе описанной последовательности действий построены двухмерные CFD-модели, выполнены численные эксперименты, обработаны расчетные данные, что позволило на основе схемы DEAD оценить интенсивность пыления при вариации скорости ветра на высоте 10 м над основанием модели. Полученная величина вертикального потока массы необходима для последующих расчетов конвективно-диффузионного переноса пыли.

Литература

1. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology / Zender C. S., Bian H.S., Newman D. – 2003. [Электронный ресурс] - http://onlinelibrary.wiley.com/doi/10.1029/2002JD002775/pdf

2. Dust modeling and forecasting in the BSC / Basart S., Baldasano J.M., Terradellas E., Benincasa F., Jorba O. – 2012. [Электронный pecypc] - http://bob-cat.aero.und.edu/jzhang/ICAP/AERP/MeetingPDFs/Overviews/Basart_ES-BSC_Dust_mod-elling.pdf

3. Simulation of absorbing aerosol indices for African dust / Yoshioka M., Mahowold N. – 2005. [Электронный pecypc]-http://onlinelibrary.wiley.com/doi/10.1029/ 2004JD005276/pdf

4. Modeling the atmospheric mineral dust cycle using a dynamic global vegetation model / Shannon S.R. – 2009. [Электронный ресурс] - <u>http://www.paleo.bris.ac.uk/</u> <u>~ggsrs/website/thesis/thesis.pdf</u>

5. Modeling the Atmospheric Dust Cycle .1. Design of a Soil-Derived Dust Emission Scheme / Marticorena B., Bergametti G. // Journal of Geophysical Research-Atmospheres. – 1995. – Vol. 100, No D8. – pp. 16415-16430.

6. Atmospheric Dust Sources / Tegen I. – 2005. [Электронный ресурс] - http://www.solas-int.org/summerschool/lectures/2005lectures/Tegen.pdf

7. Mineral Dust in HadGEM2 / Woodward S. – 2011. [Электронный ресурс] - www.metoffice.gov.uk/media/pdf/l/p/HCTN_87.pdf

8. Компьютерное моделирование процессов пыления хвостохранилища / В.А. Маслобоев, А.А. Бакланов, С.И. Мазухина, П.В. Амосов // Вестник Кольского научного центра РАН. – 2013. – № 3 (14). – С. 44 - 50.

9. Амосов П. Численное моделирование процессов пыления хвостохранилищ / П. Амосов, А. Бакланов, О. Ригина. – LAP LAMBERT Academic Publishing, 2014. – 109 с.

10. Численное моделирование процессов пыления хвостохранилища АНОФ-2 / В.А. Маслобоев, А.А. Бакланов, С.И. Мазухина, О.Ю. Ригина, П.В. Амосов // Вестник МГТУ. – 2014. – Т. 17. – № 2. – С. 376 – 384.

11. Результаты предварительного анализа численных экспериментов процессов пыления хвостохранилища АНОФ-2 / В.А. Маслобоев, А.А. Бакланов, С.И. Мазухина, О.Ю. Ригина, П.В. Амосов // Экологические проблемы северных регионов и пути их решения: мат. V Всероссийской научной конференции с международным участием: в 3 ч. / Институт проблем промышленной экологии Севера КНЦ РАН. – Апатиты: КНЦ РАН, 2014. – Ч. 3. – С. 102 – 106.

12. CFD-model development of dust transfer at a tailings dump / Amosov P.V., Baklanov A.A., Masloboev V.A., Mazihkina S.I. // Proceedings of the 4-th International Conference on Hazardous and Industrial Waste Management – CRETE-2014, 2-5 September 2014, Chania, Crete, Greece. Executive Summaries. – Chania: Technical University of Crete, 2014. – P. 279 – 280.

13. CFD-model development of dust transfer at a tailings dump / Amosov P.V., Baklanov A.A., Masloboev V.A., Mazihkina S.I. // Proceedings of the 4-th International Conference on Hazardous and Industrial Waste Management – CRETE-2014, 2-5 September 2014, Chania, Crete, Greece.– Chania: Technical University of Crete, 2014. [Электронный ресурс] – CD:\Crete2014e-Proceedings/data/papers/sessions/s25/5.pdf, 9 p.