УДК 622.271:622.6

Вашлаев Иван Иванович

кандидат технических наук, старший научный сотрудник, Институт химии и химической технологии — Обособленное подразделение Федерального исследовательского центра «Красноярский научный центр» СО РАН, 660036, Красноярский край, г. Красноярск, ул. Академгородок, 50 стр. 24

e-mail: vash49@gmail.com

Михайлов Александр Геннадьевич

доктор технических наук, заведующий лабораторией минерального сырья, Институт химии и химической технологии – Обособленное подразделение Федерального исследовательского центра «Красноярский научный центр» СО РАН e-mail: alemikhal@gmail.com

Селиванов Анатолий Васильевич

кандидат технических наук, доцент, Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева, 660037, Красноярский край, г. Красноярск, проспект им. газеты Красноярский рабочий, 31 e-mail: imanselivan@gmail.com

ОБОСНОВАНИЕ ПОРЯДКА ОТРАБОТКИ КЛИНОВИДНЫХ БЛОКОВ С УЧЕТОМ ОПТИМИЗАЦИИ ГРУЗОПОТОКОВ ГОРНОЙ МАССЫ

Аннотация:

Приведена методика аналитического определения оптимального распределения грузопотоков при перевозке горной массы автомобильным транспортом. В качестве параметра, по которому производится оптимизация, принята транспортная работа — произведение объема горной массы на расстояние транспортирования. Суть метода заключается в изучении различных вариантов отработки клиновидных блоков, определения транспортной работы и оптимизации ее на основе известных математических методов. С этой целью используется регрессионный анализ и решение уравнений. В качестве альтернативного (вспомогательного) можно использовать графический метод.

Цель работы — снижение транспортных расходов на вывозку горной массы путем оптимизации грузопотоков автомобильного транспорта.

Ключевые слова: клиновидный блок, грузопоток, оптимизация, транспортная работа, веерное подвигание, фронт работ.

DOI: 10.25635/2313-1586.2023.03.109

Vashlaev Ivan I.

Candidate of Technical Sciences, Senior Researcher, Researcher, Institute of Chemistry and Chemical Technology – Separate Division of the Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch of RAS, 660036 Krasnoyarsk, 50 Akademgorodok Str., build. 24 e-mail: vash49@gmail.com

Mikhailov Alexander G.

Doctor of Engineering Sciences, Head of the Laboratory of Mineral Raw Materials, Institute of Chemistry and Chemical Technology – Separate Division of the Federal Research Center "Krasnoyarsk Scientific Center Siberian Branch of RAS e-mail: alemikhal@gmail.com

Selivanov Anatoly V.

Candidate of Technical Sciences, Associate Professor, Siberian State University of Science and Technology named after Academician M.F. Reshetnev 660037 Krasnoyarsk, 31 Krasnoyarsky Rabochy e-mail: imanselivan@gmail.com.

JUSTIFICATION OF THE PROCEDURE FOR DEVELOPMENT OF WEDGE-SHAPED BLOCKS TAKING INTO ACCOUNT THE OPTIMIZATION OF ROCK CARGO FLOWS

Abstract

The paper concerns the analytical procedure for determining the optimal distribution of cargo flows during transportation of rock mass by road. As a parameter by which optimization is carried out, transport work is taken – the intersection of the volume of rock mass and the transportation distance. The essence of the method lies in the study of various options for working out wedge-shaped blocks, determining transport work and optimizing it based on known mathematical methods. Regression analysis and equation solving are used for this purpose. As an alternative (auxiliary), one can use a graphical method. Purpose of work: reduced transportation costs for the excavation of rock mass by optimizing freight flows of road transport.

Key words: wedge-shaped block, cargo flow, optimization, transport work, radial sweep, work front.

¹ В честь юбилея замечательного человека и ученого Корнилкова С.В., с которым знаком и дружны со дня учебы в аспирантуре и до настоящего времени.

Введение

В структуре затрат на добычу полезного ископаемого затраты на автомобильный транспорт могут достигать 50-60 %, поэтому нужно в первую очередь снижать расходы на транспортирование. Это актуально для всех систем разработки, в том числе для систем разработки с веерным подвиганием фронта работ с учетом того, что они в меньшей степени изучены.

Веерная центральная система разработки применяется при округлой и близкой к треугольной конфигурации карьерного поля, позволяющей удобно расположить постоянный поворотный пункт [1]. Изучение параметров веерного подвигания фронта горных работ рассмотрено в работах [2-9]. Исследования по данной тематике носят специфический характер, данными вопросами занимались в Сибирском федеральном университете и ОАО «СУЭК-Красноярск». В зарубежной литературе не найдено аналогичных исследований. Хотя с учетом того, что затраты на транспортирование горной массы при добыче полезных ископаемых могут достигать 50-55% и более, необходимо изучить с учетом специфики веерного подвигания фронта работ возможности снижения транспортных затрат.

Веерное подвигание фронта работ применяется при разработке горизонтальных и пологопадающих месторождений. Фронт работ перемещается здесь по мере отработки уступов так, что начало его находится всегда у постоянного поворотного пункта, а конец описывает при перемещении окружность радиусом, равным длине уступа.

Реализация веерного перемещения фронта горных работ (рис. 1) предполагает отработку выемочных блоков переменной ширины в форме треугольника [6] или трапеции – клиновидно-эксплуатационный блок (КЭБ), следовательно, объемы полезного ископаемого и вскрышных пород в отдельных выемочных участках будут различные. При разработке уступов экскаваторно-автомобильными комплексами имеется возможность транспортирования горной массы через оба фланга КЭБ. Поэтому целесообразно рассмотреть вопрос обоснования порядка отработки клиновидных блоков с учетом оптимизации грузопотоков пород вскрыши.

Разработка методики оптимизации транспортной работы

Впервые данный вопрос рассмотрен в работах [3, 6], однако получен не совсем корректный результат, и требуется более четкая формализация методики оптимизации.

Объектом исследования является клиновидный блок, схема которого приведена на рис. 2. В качестве параметра, по которому производится оптимизация, принята транспортная работа — произведение объема горной массы на расстояние транспортирования.

В данном исследовании рассматривается порядок разработки клиновидных блоков экскаваторно-автомобильными комплексами по двум вариантам:

- Bариант 1 порядок отработки блоков и транспортирование горной массы через широкую сторону КЭБ (от 30 пикета к 0);
- Bариант 2 порядок отработки блоков и транспортирование горной массы через узкую сторону КЭБ (от 0 пикета к 30).

Клиновидный блок разбит на участки, границы которых обозначены пикетами. Положение автодороги, которая ведет к отвалам, условно принято в середине блока (фронта горных работ). Поэтому все расчеты будем производить на расстояние транспортирования до флангов. Высота уступа принята равной 10 м.

Определяем площадь каждого участка (элементарного участка) по формуле

$$\Delta S = \operatorname{tg} \alpha \int_{a}^{b} l dl, \, m^{2}, \tag{1}$$

где α — угол клиновидного блока, град; l —длина участка, м.

Далее рассчитываются следующие параметры: расстояние транспортирования $l_{mp.i}$, м; объем каждого элементарного блока $\Delta S_i * V_i$, тыс. м³; транспортная работа по

элементарному блоку $V_i^*l_{\text{тр.}i}$, тыс. м^3 ·км; интегральная транспортная работа $\sum V_i^*l_{\text{тр.}i}$, тыс. м^3 ·км; интегральные объемы $\sum V_i$, тыс. м^3 и средневзвешенное расстояние транспортирования $L_{\text{срв}_3}$, км. Все расчетные показатели приведены в табл. 1 и 2.

$$l_{\text{Tp},i} = l/2 + l \cdot (i-1), \text{ M}.$$
 (2)

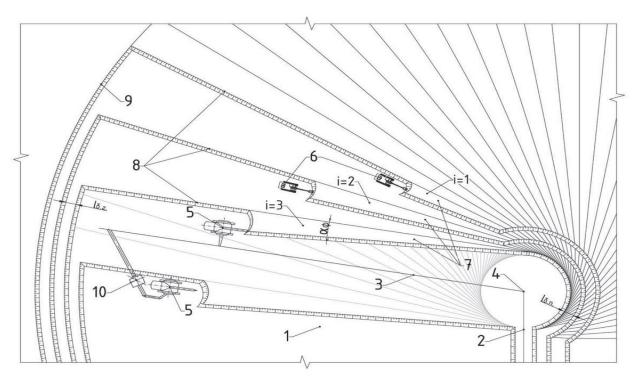


Рис. 1. Технологическая схема разработки угольных месторождений при веерной системе разработки несколькими уступами:

1 – выработанное пространство;
2 – ось магистральных транспортных коммуникаций;
3 – ось забойных транспортных коммуникаций;
4 – стационарный поворотный пункт
транспортных коммуникаций;
5 – роторный комплекс;
6 – выемочно-погрузочные комплексы цикличного действия;
7 – КЭБ;
8 – линии фронта горных работ на каждом горизонте;
9 – граница карьерного поля;
10 – межуступный перегружатель;

l — расстояние бермы безопасности (транспортной) на границе карьерного поля, м; б. п. б .г. — расстояние бермы безопасности (транспортной) со стороны поворотного пункта, м [3]

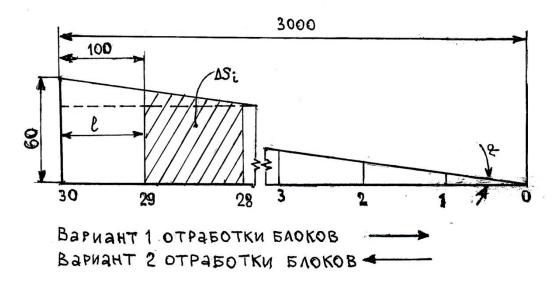


Рис. 2. Схема клиновидного блока

Таблица 1 **Транспортирование через широкую сторону КЭБ (вариант 1)**

№ пикета	Расстояние транспортирования $(l_{\it mp.i})$, м	Площадь элементарного блока (ΔS_i) , тыс. м ²	Объем эле- ментарного блока (V_i), тыс. M^3	Транспортная работа по элементарному блоку (<i>ViLi</i>), тыс. м ³ ·км	Интегральная транспортная работа (∑ViLi), тыс. м ³ ·км	Интегральный объем $(\sum V_i)$, тыс. м ³	Средне взвешенное расстояние транспортирования $(L_{\text{срвз}})$, км
30	50,0	5,90	59,0	2,95	2,95	59,00	0,0500
29	150,0	5,70	57,0	8,55	11,50	116,00	0,0991
28	250,0	5,50	55,0	13,75	25,25	171,00	0,1477
27	350,0	5,30	53,0	18,55	43,80	224,00	0,1955
26	450,0	5,10	51,0	22,95	66,75	275,00	0,2427
25	550,0	4,90	49,0	26,95	93,70	324,00	0,2892
24	650,0	4,70	47,0	30,55	124,25	371,00	0,3349
23	750,0	4,50	45,0	33,75	158,00	416,00	0,3798
22	850,0	4,30	43,0	36,55	194,55	459,00	0,4239
21	950,0	4,10	41,0	38,95	233,50	500,00	0,4670
20	1050,0	3,90	39,0	40,95	274,45	539,00	0,5092
19	1150,0	3,70	37,0	42,55	317,00	576,00	0,5503
18	1250,0	3,50	35,0	43,75	360,75	611,00	0,5904
17	1350,0	3,30	33,0	44,55	405,30	644,00	0,6293
16	1450,0	3,10	31,0	44,95	450,25	675,00	0,6670
15	1550,0	2,90	29,0	44,95	495,20	704,00	0,7034
14	1650,0	2,70	27,0	44,55	539,75	731,00	0,7384
13	1750,0	2,50	25,0	43,75	583,50	756,00	0,7718
12	1850,0	2,30	23,0	42,55	626,05	779,00	0,8037
11	1950,0	2,10	21,0	40,95	667,00	800,00	0,8338
10	2050,0	1,90	19,0	38,95	705,95	819,00	0,8620
9	2150,0	1,70	17,0	36,55	742,50	836,00	0,8882
8	2250,0	1,50	15,0	33,75	776,25	851,00	0,9122
7	2350,0	1,30	13,0	30,55	806,80	864,00	0,9338
6	2450,0	1,10	11,0	26,95	833,75	875,00	0,9529
5	2550,0	0,90	9,0	22,95	856,70	884,00	0,9691
4	2650,0	0,70	7,0	18,55	875,25	891,00	0,9823
3	2750,0	0,50	5,0	13,75	889,00	896,00	0,9922
2	2850,0	0,30	3,0	8,55	897,55	899,00	0,9984
1	2950,0	0,10	1,0	2,95	900,50	900,00	1,0006
			·				

Таблица 2 **Транспортирование через узкую сторону КЭБ (вариант 2)**

№ пикета	Расстояние транспортирования $(l_{mp.i})$, м	Площадь элементарного блока (ΔS_i) , тыс. M^2	Объем элементарного блока (V_i) , тыс. M^3	Транспортная работа по элементарному блоку (V _i L _i), тыс. м ³ ·км	Интегральная транспортная работа $(\sum V_i L_i)$, тыс. M^3 ·км	Инте- гральный объем ($\sum V_i$), тыс. м ³	Средне взвешенное расстояние транспортирования $(L_{\text{срв3}})$, км
1	50	0,10	1,0	0,05	0,05	1,00	0,0500
2	150	0,30	3,0	0,45	0,50	4,00	0,1250
3	250	0,50	5,0	1,25	1,75	9,00	0,1944
4	350	0,70	7,0	2,45	4,20	16,00	0,2625
5	450	0,90	9,0	4,05	8,25	25,00	0,3300
6	550	1,10	11,0	6,05	14,30	36,00	0,3972
7	650	1,30	13,0	8,45	22,75	49,00	0,4643
8	750	1,50	15,0	11,25	34,00	64,00	0,5313
9	850	1,70	17,0	14,45	48,45	81,00	0,5981
10	950	1,90	19,0	18,05	66,50	100,00	0,6650
11	1050	2,10	21,0	22,05	88,55	121,00	0,7318
12	1150	2,30	23,0	26,45	115,00	144,00	0,7986
13	1250	2,50	25,0	31,25	146,25	169,00	0,8654
14	1350	2,70	27,0	36,45	182,70	196,00	0,9321
15	1450	2,90	29,0	42,05	224,75	225,00	0,9989
16	1550	3,10	31,0	48,05	272,80	256,00	1,0656
17	1650	3,30	33,0	54,45	327,25	289,00	1,1324
18	1750	3,50	35,0	61,25	388,50	324,00	1,1991
19	1850	3,70	37,0	68,45	456,95	361,00	1,2658
20	1950	3,90	39,0	76,05	533,00	400,00	1,3325
21	2050	4,10	41,0	84,05	617,05	441,00	1,3992
22	2150	4,30	43,0	92,45	709,50	484,00	1,4659
23	2250	4,50	45,0	101,25	810,75	529,00	1,5326
24	2350	4,70	47,0	110,45	921,20	576,00	1,5993
25	2450	4,90	49,0	120,05	1041,25	625,00	1,6660
26	2550	5,10	51,0	130,05	1171,30	676,00	1,7327
27	2650	5,30	53,0	140,45	1311,75	729,00	1,7994
28	2750	5,50	55,0	151,25	1463,00	784,00	1,8661
29	2850	5,70	57,0	162,45	1625,45	841,00	1,9328
30	2950	5,90	59,0	174,05	1799,50	900,00	1,9994

По транспортной работе строятся графики нарастающих объемов в зависимости от порядка отработки блоков (направления грузопотока) (см. рис. 2) и по стандартным программам математической статистики вычисляются уравнения регрессии зависимости интегральной транспортной работы от порядка отработки блоков. Из графика (см. рис. 2) и табл. 1 и 2 видно, что при отработке КЭБ со стороны широкой части в сторону узкой

и направлении грузопотока в сторону широкой части (вариант 1) экономичнее варианта 2 (направление порядка отработки КЭБ со стороны узкой части в сторону широкой и, соответственно, направление грузопотока в сторону узкой) по транспортной работе в два раза.

Уравнение регрессии по варианту 1 (грузопоток направлен в сторону широкой части КЭБ (левый фланг блока)) имеет следующий вид и функциональную зависимость:

$$y = 0.0667x^3 - 3.2x^2 + 6.1833x + 897.45$$
, tec. m^3 · km, (3)

где y – интегральная транспортная работа, тыс. M^3 -км; x – номер пикета.

Для варианта 2 (грузопоток направлен в сторону узкой части КЭБ) также получена зависимость с высоким коэффициентом регрессии:

$$y = 0.0667x^3 - 4E - 13x^2 - 0.0167x - 5E - 11$$
, тыс. м³·км, (4) где y – интегральная транспортная работа, тыс. м³·км; x – номер пикета.

Оптимальный вариант грузоперевозок будет при комбинации грузопотоков, т. е. при равенстве транспортных работ для 1-го и 2-го вариантов. Приравняв между собой уравнения (3) и (4), получим

$$y = -3.2x^2 + 6.2x + 897.45. (5)$$

Решив уравнение (5), найдем значение x и далее определяем расстояние до оптимальной точки клиновидно-эксплутационного блока, при котором транспортные работы при первом и втором варианте равны. Решению уравнения соответствует x=17,74, это будет точка между 17 и 18-м пикетом, в пересчете на расстояние от нулевого пикета равно 1774 м, транспортная работа для первого и второго вариантов по формулам (3), (4) равна 371 тыс. \mathbf{m}^3 · км. Подтверждением правильности расчета является точка пересечения графиков (рис. 3) транспортной работы, что соответствует наилучшему варианту распределения грузопотоков. Суммарная транспортная работа при комбинации грузопотоков будет равна 371+371=742 тыс. \mathbf{m}^3 · км, что лучше первого варианта на 21 % и лучше второго — на 242 %. Средневзвешенное расстояние транспортирования оптимального варианта составит 0,824 км. Минимизация транспортной работы соответствует минимизации затрат на транспортирование для принятой технологии отработки и снижению общих затрат на разработку месторождения.

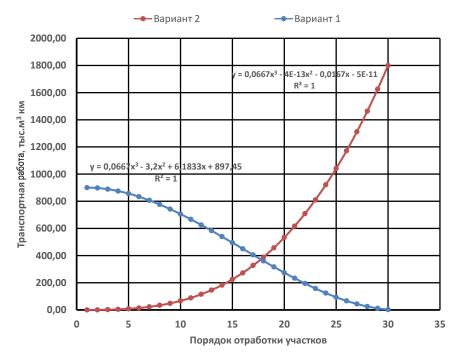


Рис. 3. Изменение нарастающих объемов транспортной работы от порядка отработки элементарных участков

Порядок отработки КЭБ следующий: если начинается отработка от нулевого пикета (вариант 2), при достижении длины фронта работ 1774 м (точка оптимальности) должны изменить направление грузопотока в противоположную сторону (через широкую сторону КЭБ). Аналогично должна вестись выемка пород со стороны 30 пикета (вариант 1), и при транспортировании пород через широкую сторону КЭБ, достигнув точки оптимальности, меняем направление грузопотока на противоположное (через узкую сторону КЭБ). Т. е. горная масса, находящаяся между 30 пикетом и точкой оптимальности, должна транспортироваться через широкую сторону КЭБ, а горная масса между нулевым пикетом и точкой оптимальности должна вывозиться через узкую сторону КЭБ.

В данной статье рассмотрена оптимизация транспортной работы для упрощенного варианта отработки: уклон клиновидно-эксплуатационного блока равен нулю, качество автодороги на горизонте одинаковое. Для дальнейшего изучения необходимо учитывать полную трассу транспортирования от места погрузки до разгрузки на отвале с учетом качества дороги, уклона и длины трассы. Учет основных параметров трассы рекомендуется производить на основе приведения ее длины к горизонтальному эквиваленту [10-11].

Выводы

- При отработке КЭБ со стороны широкой части в сторону узкой и направлении грузопотока в сторону широкой части (вариант 1) экономичнее по транспортной работе варианта 2 (направление порядка отработки КЭБ со стороны узкой части в сторону широкой и, соответственно, направлении грузопотока в сторону узкой) в два раза.
- Снижение объема транспортных работ приводит и к снижению затрат на транспортирование горной массы.
- Горная масса, находящаяся между 30 пикетом и точкой оптимальности, должна транспортироваться через широкую сторону КЭБ, а горная масса между нулевым пикетом и точкой оптимальности должна вывозиться через узкую сторону КЭБ.
- Приведенная выше методика оптимизации грузопотоков позволяет снизить объем транспортной работы относительно варианта 1 на 15 23 % и относительно варианта 2 на 220 250 %, что позволяет получить значительный экономический эффект.
- Данная работа является теоретическим развитием технологии горных работ при веерной разработке месторождений.
- Для оценки и оптимизации грузопотоков от забоя до пунктов разгрузки нужно использовать метод приведения трассы транспортирования к горизонтальному эквиваленту.
- В статье изложены базовые принципы обоснования направления грузопотоков при отработке КЭБ, которые в реальных условиях могут быть расширены и усовершенствованы на базе геоинформационных технологий планирования горных работ.

Список литературы

- 1. Ржевский В.В., 1980. *Технология и комплексная механизация открытых горных работ*. Учебник, изд. 3, перераб. и доп. Москва: Недра, 631 с.
- 2. Шорохов В.П., Кисляков В.Е., 2012. Веерное подвигание фронта работ при разработке мощных угольных пластов: LAP LAMBERT Academic Publishing. Красноярск: СФУ, 77 с.
- 3. Катышев П.В., Кисляков В.Е., Вокин В.Н., 2016. Обоснование направления транспортирования вскрышных пород при веерной системе разработки. *Успехи современного естествознания*, № 12, ч. 1, С. 162 166.
- 4. Катышев П.В., Кисляков В.Е., 2016. Обоснование параметров фронта горных работ при отработке пологопадающих угольных месторождений веерной системой. *Журнал Сибирского федерального университета*. *Серия: техника и технологии*, Т. 9, № 2, С. 166 173.

- 5. Новожилов М.Г., Хохряков В.С., Пчёлкин Г.Д., Эскин В.С., 1971. *Технология открытой разработки месторождений полезных ископаемых*. Ч. 2. Москва: Недра, 552 с.
- 6. Катышев П.В., 2018. Обоснование технологии выемки пологопадающих угольных месторождений при веерной системе разработки: дис. ... канд. техн. наук, 143 с.
- 7. Катышев П.В., Кисляков В.Е. 2016. Обоснование параметров фронта горных работ при отработке пологопадающих угольных месторождений веерной системой. *Журнал Сибирского федерального университета*. *Серия: техника и технологии*, Т. 9, № 2, С. 166 173.
- 8. Кисляков В.Е., Катышев П.В., 2014. Исследование развития фронта горных работ на пологопадающих месторождениях при веерной системе разработки. *Маркшейдерия и недропользование*, Т. 2, С. 42-44.
- 9. Кисляков В.Е., Никитин А.В., Катышев П.В., Сенаторов Д.С., 2013. Работа экскаваторов типа ЭКГ в клиновидной заходке. *Маркшейдерия и недропользование*, Т. 5, С. 44-50.
- 10. Лель Ю.И., Салахиев Р.Г., Арефьев С.А., Сандригайло И.Н., 2014. Совершенствование нормирования расхода топлива карьерными автосамосвалами на основе горизонтальных эквивалентов вертикального перемещения горной массы. *Известия вузов.* Горный журнал, № 2, С. 107 115.
- 11. Вашлаев И.И., Селиванов А.В., 2011. Управление погрузочно-транспортными процессами на открытых горных работах на основе интегрального показателя горнотехнических условий транспортирования. *Открытые горные работы в XXI веке: Сб. материалов Международной науч.-практ. конф. (4 7 октября 2011г.)*, Красноярск, С. 250 256.

References

- 1. Rzhevskii V.V., 1980. Tekhnologiya i kompleksnaya mekhanizatsiya otkrytykh gornykh rabot [Technology and complex mechanization of open-pit mining]. Uchebnik, izd. 3, pererab. i dop. Moscow: Nedra, 631 p.
- 2. Shorokhov V.P., Kislyakov V.E., 2012. Veernoe podviganie fronta rabot pri razrabotke moshchnykh ugol'nykh plastov [Radial advance of the front of work in the development of powerful coal seams]: LAP LAMBERT Academic Publishing. Krasno-yarsk: SFU, 77 p.
- 3. Katyshev P.V., Kislyakov V.E., Vokin V.N., 2016. Obosnovanie napravleniya transportirovaniya vskryshnykh porod pri veernoi sisteme razrabotki . [Justification of the direction of transportation of overburden rocks with the radial system of development]. Uspekhi sovre-mennogo estestvoznaniya, N 12, ch. 1, P. 162 166.
- 4. Katyshev P.V., Kislyakov V.E., 2016. Obosnovanie parametrov fronta gornykh rabot pri otrabotke pologopadayushchikh ugol'nykh mestorozhdenii veernoi sistemoi [Substantiation of the parameters of the front of mining operations during the development of gently falling coal deposits by radial system]. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: tekhnika i tekhnologii, Vol. 9, № 2, P. 166 173.
- 5. Novozhilov M.G., Khokhryakov V.S., Pchelkin G.D., Eskin V.S., 1971. Tekhnologiya otkrytoi razrabotki mestorozhdenii poleznykh iskopaemykh [Technology of open mining of mineral deposits]. Ch. 2. Moscow: Nedra, 552 s.
- 6. Katyshev P.V., 2018. Obosnovanie tekhnologii vyemki pologopadayushchikh ugol'nykh mestorozhdenii pri veernoi sisteme razrabotki [Justification of the technology of excavation of gently falling coal deposits with a radial system of development]: dis. ... kand. tekhn. nauk, 143 p.
- 7. Katyshev P.V., Kislyakov V.E. 2016. Obosnovanie parametrov fronta gornykh rabot pri otrabotke pologopadayushchikh ugol'nykh mestorozhdenii veernoi sistemoi [Substantiation of the parameters of the front of mining operations during the development of gently falling

coal deposits by the radial system]. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: tekhnika i tekhnologii, Vol. 9, N 2, P. 166 – 173.

- 8. Kislyakov V.E., Katyshev P.V., 2014. Issledovanie razvitiya fronta gornykh rabot na pologopadayushchikh mestorozhdeniyakh pri veernoi sisteme razrabotki [Investigation of the development of the front of mining operations on gently falling deposits with radial system of development]. Marksheideriya i nedropol'zovanie, Vol. 2, P. 42 44.
- 9. Kislyakov V.E., Nikitin A.V., Katyshev P.V., Senatorov D.S., 2013. Rabota ekskavatorov tipa EKG v klinovidnoi zakhodke [Work of excavators of the EKG type in a wedge-shaped approach]. Marksheideriya i nedropol'zovanie, Vol. 5, P. 44 50.
- 10. Lel' Yu.I., Salakhiev R.G., Aref'ev S.A., Sandrigailo I.N., 2014. Sovershenstvovanie normirovaniya raskhoda topliva kar'ernymi avtosamosvalami na osnove gorizontal'nykh ekvivalentov vertikal'nogo peremeshcheniya gornoi massy [Improving the rationing of fuel consumption by quarry dump trucks based on horizontal equivalents of vertical movement of rock mass]. Izvestiya vuzov. Gornyi zhurnal, № 2, P. 107 115.
- 11. Vashlaev I.I., Selivanov A.V., 2011. Upravlenie pogruzochno-transportnymi protsessami na otkrytykh gornykh rabotakh na osnove integral'nogo pokazatelya gornotekhnicheskikh uslovii transportirovaniya [Management of loading and transport processes in open-pit mining operations based on an integral indicator of mining technical conditions of transportation]. Otkrytye gornye raboty v XXI veke: Sb. materialov Mezhdunarodnoi nauch.-prakt. konf. (4 7 oktyabrya 2011g.), Krasnoyarsk, P. 250 256.