COMPUTER SIMULATION OF THE INITIAL STRESS FIELD FOR ROCK BURST PREDICTION

Authors

  • Aleksandr S. Pugach

DOI:

https://doi.org/10.25635/2313-1586.2022.01.025

Keywords:

rock bump, stress-strain state of rock massif, initial stresses field, geomechanical processes, dilatancy, potential energy of deformation, computer modeling, hardening model, plasticity

Abstract

The article discusses the features of rock burst prediction based on the use of computer simulation. The model represents the Vorkuta deposit, the development of which is complicated by mining and geological conditions and the influence of tectonics, which create prerequisites for the formation of an initial stress field. An analysis was made of how the stressstrain state of the massif affects the manifestation of rock bursts, based on which we propose a method for predicting them, including the model of a hardening massif. The coal layer in this case is a plastic material. Transitional yield zones are formed directly in the
coal seam, which change their state over time and play a role in creating yield strength maxima, making an additional contribution to the redistribution of stresses, as well as hardening zones, expressed through higher-order polynomials when describing the stress state. The calculation model includes several combinations of the deformation modulus and
Poisson's ratio in the range of 0.8Emean...1.2Emean and 0.8νmean...1.2νmean, where Emean and νmean are average
values determined by laboratory methods. The calculated values obtained are expressed in principal stresses. For values at the points of rock bumps (according to mining plans) and at the indicated neutral points, where rock bumps were not observed, the density of the number of realization of stress values was calculated. For each of these cases, the distribution of probability densities has a different character. At the points corresponding to rock bumps, there are prerequisites for a sharp change in the stress state during the formation of the outcrop surface, while at other points there are prerequisites for a gradual decrease
in tension. This model allows us to establish causal relationships. The resulting solution does not contradict the practice of mining operations and can be reflected in the regional forecast.

References

Справочник (кадастр) физических свойств горных пород, 1975. Под ред. Н.В. Мельникова, В.В. Ржевского, М.М. Протодьяконова. Москва: Недра, 279 с.

Chen Yulong, Zuo Jianping, Liu Dejun, Wang Zhenbo, 2018. Deformation failure characteristics of coal-rock combined body under uniaxial compression: experimental and numerical investigations. Bulletin of Engineering Geology and the Environment, pp. 1 - 16.

Кузяев Л.С., Пугач А.С., 2014. Метод компьютерного анализа опасных геодинамических процессов на глубоких горизонтах шахт Воркутинского месторождения. Нелинейные геомеханико-геодинамические процессы при отработке месторождений

полезных ископаемых на больших глубинах: материалы 4-й Российско-Китайской научной конференции, 27 - 31 июля, Владивосток.

Tymiński Wojciech, Kiełczewski Tomasz, Daniluk Hubert, 2018. Hardening soil model-influence of index on unloading-reloading modulus. Proceeding of China-Europe Conference on Geotechnical Engineering, August, pp. 89 - 93.

Федеральные нормы и правила в области промышленной безопасности «Инструкция по прогнозу динамических явлений и мониторингу массива горных пород при отработке угольных месторождений». Приказ Федеральной службы по экологическому,

технологическому и атомному надзору от 10 декабря 2020 года N 515. Доступ из Электронного фонда правовых и нормативных документов. URL: https://base.garant.ru/400164978/? (дата обращения 22.04.2022)

Ивлев Д.Д., Быковцев Г.И., 1971. Теория упрочняющегося пластического тела. Москва: Физматлит, 232 с.

Fu Xiaolong, Dai Junsheng, Feng Jianwei, 2018. Prediction of tectonic fractures in coal reservoirs using geomechanical method. Geosciences Journal, August, Volume 22, Issue 4, pp. 589 - 608.

Молчанов А.Е., 2008. Математическое моделирование сейсмотектонических процессов в зонах активных разломов. Тектонофизика и актуальные вопросы наук о Земле. К 40-летию создания М.В. Гзовским лаборатории тектонофизики в ИФЗ РАН:

Тезисы докладов Всероссийской конференции. В 2-х томах. Т. 1. Москва: ИФЗ, С. 152 - 154.

Zoback Mark D., 2007. Reservoir Geomechanics. Stanford Univercity, California: Cambridge Univercity Press, 452 p.

Song Dazhao, He Xueqiu, Wang Enyuan, Li Zhenlei, Liu Jie, 2019. Coal and Rock Deformation, Failure Mechanism, and Energy Conversion. Rockburst Evolutionary Process and Energy Dissipation Characteristics, pp. 19 - 51.

Петухов И.М., Линьков А.М., Сидоров В.С. и др., 1992. Расчётные методы в механике горных ударов и выбросов: Справочное пособие. Москва: Недра, 56 с.

Баклашов И.В., 2004. Геомеханика: Учебник для вузов. Том 1. Основы геомеханики. Москва: МГГУ, 208 с.

Bolton M.D., 1986. The Strenght and Dilatancy of Sands. Geotechnique, Vol. 36, №1, pp. 65 - 78.

Schanz T., Vermeer P.A., 1996. Angles of Friction and Dilatancy of Sand. Geotechnique, № 46, pp. 145 - 151.

Kondner R.L., 1963. Hyperbolic stress-strain response: Cohesive soils. Soil Mechanics and Foundation Division Journal, № 89(1), pp. 115 - 143.

Duncan J. M. Chang C.-Y. 1970. Nonlinear analysis of stress and strain in soils. Soil Mechanics and Foundation Division Journal, № 96(5), pp. 1629-1653.

Chen Yulong, Zuo Jianping, Liu Dejun, Wang Zhenbo, 2018. Deformation failure characteristics of coal-rock combined bode under uniaxial compression: experimental and numerical investigations. Bulletin of Engineering Geology and the Environment, pp. 1 - 16.

DOI https://doi.org/10.1007/s10064-018-1336-0.

Босов А.Д., Орлов Ю.Н., 2013. Эмпирическое уравнение Фоккера-Планка для прогнозирования нестационарных временных рядов. Препринты ИПМ им. М.В. Келдыша, № 3, 30 с. URL: http://www.mathnet.ru/php/ archive.phtml?

jrnid=ipmp&papered=3&w (дата обращения 20.04.2022)

Published

2022-06-08

Issue

Section

GEOMECHANICAL AND GEODYNAMIC PROCESSES IN THE DEVELOPMENT OF DEPOSITS