STUDY OF HYDRAULIC FRACTURING OF AN X-SHAPED SYSTEM OF BOREHOLES IN LABORATORY CONDITIONS
DOI:
https://doi.org/10.25635/2313-1586.2023.02.047Keywords:
Hydraulic fracturing, laboratory experiment, test bench, physical modeling, fracture, stress state, computed tomographyAbstract
The paper presents the results of laboratory studies of the development of a hydraulic fracture created in two intersecting boreholes in a non-uniform stress field. The experiment was carried out in artificial cubic blocks of sandcrete, as well as its mixture with a 2 mm coal fraction. The boreholes were drilled without percussion, one of them was vertical. To supply the working fluid to the resulting X-shaped loading interval, a special tool with compression packers made of polyurethane was used.
The internal structure of the blocks and the trajectories of the formed cracks were studied by the method of computed tomography, based on the attenuation of X-ray radiation from rocks and inclusions of different density. After hydraulic fracturing was completed, the opening of fractures in various materials was estimated, as well as particular features of its propagation depending on the geometric parameters of the problem and the compressive stress field.
It has been established that in a uniform stress field, boreholes are highly likely to be united by a single longitudinal fracture located in a plane intersecting the axes of the boreholes, regardless of the angle between them.
In the case of the presence of the maximum compressive stress directed perpendicular to this plane, in stronger blocks a fracture is formed on the wall of one of the boreholes in the direction of this stress. In sandcrete blocks with the addition of coal fraction, the boreholes are also connected by a single fracture; however, with an increase in the distance between them, the fracture is reoriented in the direction of the maximum compressive stress.
References
Beltyukov N.L., 2021. Studying the Kaiser effect during modeling of rock loading conditions using the NX-borehole jack. Journal of Physics: Conference Series, Vol. 1945, 012023.
Курленя М.В., Сердюков С.В., Патутин А.В., 2015. Определение деформационных свойств горных пород по данным прессиометрических испытаний в интервале гидроразрыва скважины. Физико-технические проблемы разработки полезных ископа-емых, № 4, С. 96 – 102.
Rubtsova E.V., Skulkin A.A., 2018. Hydraulic fracturing stress measurement in underground salt rock mines at Upper Kama Deposit. IOP Conference Series: Earth and Environmental Science, Vol. 134, 012049.
Леконцев Ю.М., Сажин П.В., 2019. Проблемы управления труднообрушающимися кровлями при отработке пологих угольных пластов. Интерэкспо Гео-Сибирь, Т. 2, № 4, С. 162 – 169.
Yang J., Liu B., Bian W., Chen K., Wang H., Cao C., 2021. Application cumulative tensile explosions for roof cutting in Chinese underground coal mines. Archives of Mining Sciences, Vol. 66, P. 421 – 435.
Jeffrey R., Mills K., Zhang X, 2013. Experience and results from using hydraulic fracturing in coal mining. Proceedings of the 3rd International Workshop on Mine Hazards Prevention and Control, Brisbane, P. 110 – 116.
Plaksin M.S. Rodin R.I., 2019. Improvement of degasification efficiency by pulsed injection of water in coal seam. IOP Conference Series: Earth and Environmental Science, Vol. 377, 012052.
Shilova T., Patutin A., Rybalkin L., Serdyukov S., Hutornoy V., 2017. Development of the impermeable membranes using directional hydraulic fracturing. Procedia Engineering, Vol. 191, P. 520 – 524.
Lu W., He C. 2020. Numerical simulation of the fracture propagation of linear collaborative directional hydraulic fracturing controlled by pre-slotted guide and fracturing boreholes. Engineering Fracture Mechanics, Vol. 235, 107128.
Pavlov V.A., Serdyukov S.V., Martynyuk P.A., Patutin A.V., 2019. Optimisation of borehole-jack fracturing technique for in situ stress measurement. International Journal of Geotechnical Engineering, Vol. 13, № 5, P. 451 – 457.
Cheng Y., Lu Z., Du X., Zhang X., Zeng M., 2020. A crack propagation control study of directional hydraulic fracturing based on hydraulic slotting and a nonuniform pore pressure field. Geofluids, 8814352.
Cha M., Alqahtani N.B., Yin X., Kneafsey T.J. et al., 2017. Laboratory system for studying cryogenic thermal rock fracturing for well stimulation. Journal of Petroleum Science and Engineering, Vol. 156, P. 780 – 789.
Курленя М.В., Алтунина Л.К., Кувшинов В.А., Патутин А.В., Сердюков С.В., 2012. Пеногель для гидроразрыва газоносных угольных пластов в шахтных условиях. Физико-технические проблемы разработки полезных ископаемых, № 6, С. 3 – 11.
Сердюков С.В., Курленя М.В., Рыбалкин Л.А., Шилова Т.В., 2019. Влияние гидроразрыва угля на фильтрационное сопротивление зоны дренирования дегазационной скважины. Физико-технические проблемы разработки полезных ископаемых, № 2, С. 3 – 13.
Cheng Y., Lu Y., Ge Z., Cheng L., Zheng J., Zhang W., 2018. Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing. Fuel, Vol. 218, P. 316 – 324.
Патутин А.В., Азаров А.В., Рыбалкин Л.А., Дробчик А.Н., Сердюков С.В., 2022. Устойчивость развития трещины гидроразрыва между двумя параллельными скважинами. Физико-технические проблемы разработки полезных ископаемых, № 2, С. 34 44.
Азаров А.В., Патутин А.В., Сердюков С.В., 2022. О форме трещин гидроразрыва в окрестности сопряжения скважины с боковым стволом. Физико-технические проблемы разработки полезных ископаемых, № 5, С. 49 – 62.
Патутин А.В., Скулкин А.А., Прасолова В.С., 2023. Физическое моделирование гидроразрыва скважины с боковым стволом в искусственных блоках. Физико-технические проблемы разработки полезных ископаемых, № 2 (принята к печати).
Zuo S., Ge Z., Deng K., Zheng J., Wang H., 2020. Fracture initiation pressure and failure modes of tree-type hydraulic fracturing in gas-bearing coal seams. Journal of Natural Gas Science and Engineering, Vol. 77, 103260.
Савицкий Я.В., 2015. Современные возможности метода рентгеновской то-мографии при исследовании керна нефтяных и газовых месторождений. Вестник Пермского национального исследовательского политехнического университета. Геоло-гия. Нефтегазовое и горное дело, Т. 14, № 15, С. 28 – 37.
Cao W., Yildirim B., Durucan S., Wolf K. H., Cai W., Agrawal H., Korre A., 2021. Fracture behaviour and seismic response of naturally fractured coal subjected to true triaxial stresses and hydraulic fracturing. Fuel, Vol. 288, 119618.
Yushi Z., Shicheng Z., Tong Z., Xiang Z., Tiankui G., 2016. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology. Rock Mechanics and Rock Engineering, 49, P. 33 – 45.
Рубцова Е.В., Скулкин А.А., 2017. О физическом моделировании процесса измерительного гидроразрыва в модельных образцах при их неравнокомпонентном нагружении. Проблемы недропользования, № 2 (13), С. 42 – 46. DOI: https://doi.org/ 10.18454/2313-1586.2017.02.042
Leontiev A., Rubtsova E., 2019. Analysis of crack formation in model specimens during hydraulic fracturing in holes. Trigger Effects in Geosystems, The 5th International Conference, Moscow, P. 247 – 256.
Chen J., Li X., Cao H., Huang L., 2020. Experimental investigation of the influence of pulsating hydraulic fracturing on pre-existing fractures propagation in coal. Journal of Petroleum Science and Engineering, Vol. 189, 107040.