SHEAR STRENGTH CHARACTERISTICS OF THE СEMENT-STABILIZED SOFT CLAYEY SOILS OF THE NORTHEN DVINA DELTA

Authors

  • Julia M. Glebova
  • Viktor V. Nosyrev

DOI:

https://doi.org/10.25635/2313-1586.2023.02.057

Keywords:

coastal soft clayey soils, undrained shear strength, stress strain, uniaxial compression, сement-stabilized clay, unconfined compression testing

Abstract

The article presents the study results of strength characteristics of the cement-stabilized soft clayey soils. Samples of soft clayey soils were taken from a depth of 10.6 – 10.8 meter at the site located on the island territory in the Northern Dvina delta. Thickness layers of fine and silty sands varies between 2 and 7 meter. These layers are located above the soft clayey soils of thickness up to 7 meter. The initial characteristics of the samples of soft clayey soils are: density 1.78 ; unit weight of particles 2.69 ; water content 0.50; liquid limit 0.46; plastic limit 0.36; void ratio 1.27; oedometer modulus 1.5 МPа. The specific feature of the soft clayey soils is the organic content of up to 11%. The aim of the research was to find the dependencies of the undrained shear strength сu and cement content m. The undrained shear strength was determined by the method of uniaxial compression of cylindrical samples without a cage according to GOST 12248.2-2020.

Cement used for stabilization of the soft clayey soils: grade of cement is CEM 42.5 N, beginning of setting is 135 minutes, compression strength at an exposure of 2 days is 30.9 МPа, compression strength at an exposure of 28 days is 57.9 МPа. The samples сement-stabilized clay at an exposure of 28 days were loaded with a vertical stress in LoadTrac-II GeoComp loading frames until destruction. The cement fiber contents were 5, 10, 15, 20 % by weight of the dry soil.

The results indicate that the shear strength for the investigated cement-stabilized soft clayey can increase several times.  For example, undrained shear strength of natural soils was 17 kPa, while undrained shear strength of natural soils mixed with 5% cement is 85 kPa, and exceeded the value of 75 kPa as a characteristic of weak soils. The linear correlation of the undrained shear strength сu with a cement content m was obtained: сu = 4,0m + 67.9 (R2 = 0.94). Samples of сement-stabilized clay were characterized by brittle destruction when reaching the ultimate resistance.

The equation can be used for geological survey and design of buildings foundations, harbors, and bank protection walls, as well as using methods of numerical simulation.

References

Aguiar V. N., Andrade M.S., Martins I. S. M., Rémy J. P. P., Lima P.E., 2021. Compressibility and consolidation properties of Santos soft clay near Barnabé Island. Soils and Rocks, Vol. 44, No. 4, Pp. 1 – 18. DOI:10.28927/SR.2021.074821.

Akbarimehr D., Eslami A., Aflaki E., Imam R., 2020. Using empirical correlations and artificial neural network to estimate compressibility of low plasticity clays. Arabian Journal of Geosciences, Vol. 13, No. 1225. DOI:10.1007/s12517-020-06228-3.

A. Boz, A. Sezer, T. Ozdemir, G. E. Hızal, and O. A. Dolmacı, 2018. Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, Vol. 11, No. 6., P. 122.

ГОСТ 12248.2-2020. Грунты. Определение характеристик прочности методом одноосного сжатия. Введ. 2021-06-01. Москва: Изд-во Стандартинформ, 2020, 11 с.

ГОСТ 25.100-2020. Грунты. Классификация. Введ. 2021-01-01. Москва: Изд-во Стандартинформ, 2020, 41 с.

Cabalar, A.F., Awraheem, M.H. and Khalaf, M.M., 2018. Geotechnical properties of a low-plasticity clay with biopolymer. J. Mater. Civ. Eng., Vol. 30(8), No. 04018170.

Cai Y., Xu L., Liu W. et al., 2020. Field Test Study on the dynamic response of the cement-improved expansive soil subgrade of a heavy-haul railway. Soil Dynamics and Earthquake Engineering, Vol. 128, No. 10, Pp. 58 – 78.

Cao Z., Ma Q., Wang H., 2019. Effect of Basalt Fiber Addition on Static-Dynamic Mechanical Behaviors and Microstructure of Stabilized Soil. Compositing Cement and Fly Ash. Advances in Civil Engineering, Vol. 2019, No. 8214534, P. 20. DOI: 10.1155/2019/8214534.

Chang I., Cho G.C., 2018. Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay. Acta Geotechnica, Vol. 14(2), Pp. 361 – 375. DOI:10.1007/s11440-018-0641-x.

Deqiang Che, Junhui Luo,Xianlin Liu, Decai Mi, Longwang Xu., 2019. Improved Double-Layer Soil Consolidation Theory and Its Application in Marine Soft Soil Engineering. J. Mar. Sci. Eng., Vol. 7 (5), No. 156. DOI:10.3390/jmse7050156.

Dhianty E., Mochtar I., 2018. Method of removing secondary compression on clay using preloading. MATEC Web of Conferences, Vol. 195, No. 03006. DOI: 10.1051/matecconf/201819503006.

ErzinY., Abasi H.M., Kordnaeij A., Erzin S., 2020. Prediction of Compression Index of Saturated Clays Using Robust Optimization Model. Journal of Soft Computing in Civil Engineering, Vol. 4., No. 3, Pp. 1 – 16. DOI: 10.22115/SCCE.2020.233075.1226.

Gao M., Yuan F., Xue Y., Guan P., 2020. Effect of Polyacrylamide on Com-pression Rate of Lime Stabilized Soil. Sains Malaysiana, Vol. 49(8), Pp. 1925 – 1934. DOI:10.17576/jsm-2020-4908-14.

Hassan N.M.K.N., Wahid S., Wahab M.T.A., 2018. Geotechnical and Minerology Properties of Marine Clay at the Northeast of Penang Island. MATEC Web of Conferences, Vol. 203, No. 04005. DOI: https://doi.org/10.1051/matecconf/201820304005.

Huang C., Li Q., Wu S., Liu Y., Li J., 2019. Assessment of empirical equations of the compression index of muddy clay: sensitivity to geographic locality. Arabian Journal of Geosciences, Vol. 12, No. 122, Pp. 1 – 13. DOI:10.1007/s[[517-019-4276-5.

Kifae A., Hassan A., Shanbara H., 2018. Empirical Relationships Between Index Properties and Compression Indices of Clayey Soils in Al-Nasiriya City. Journal of University of Babylon, Engineering Sciences, Vol. 26, No. 1, Pp. 348 – 356.

Kwon Y.-M., Chang I., Lee M. and Cho G.-C., 2019. Geotechnical engineering behavior of biopolymer-treated soft marine soil. Geomechanics and Engineering, Vol. 17, No. 5, Pp. 453 – 464 DOI: 10.12989/gae.2019.17.5.453.

Mashifana T. P., Okonta F. N.i., Ntuli F., 2018. Geotechnical Properties and Microstructure of Lime-Fly Ash-Phosphogypsum-Stabilized Soil. Advances in Civil Engineering, Vol. 2018, No. 3640868, Pp. 9 DOI: 10.1155/2018/3640868.

Nguyen T.N., Nguyen T.D., Bui T.S., 2021. Geotechnical Properties of Soft Marine Soil at Chan May Port, Vietnam. Journal of the Polish Mineral Engineering Society, Vol. 21, No. 2, Pp. 20 7– 216. DOI http://doi.org/10.29227/IM-2021-02-18.

Ruan B., Zheng S., Teng J., Ding H., Ma.C., 2020. Analysis on the Triaxial Shear Behavior and Microstructure of Cement-Stabilized Clay Reinforced with Glass Fibers. Advances in Civil Engineering, Vol. 2020, No. 8842091, Pp. 12. DOI: /10.1155/2020/8842091.

Salih N., 2019. Geotechnical characteristics correlations for fine-grained soils. 4th International Conference on Buildings, Construction and Environmental Engineer-ing, 7-9 October, Istanbul, Turkey, Vol. 737, No. 012099, Pp. 1 – 12. DOI:10.1088/1757-899X/737/1/012099.

Семкин В.В., 2020. Методическое пособие по укреплению грунтов методами струйной цементации, глубинным перемешиванием, инъекции растворами на ос-нове микроцементов, манжетной инъекцией в режиме гидроразрывов. Москва: АО «НИЦ «Строительство», 89 с.

H. Shi, Z. Li, W. Li, S. Wang, B. Wang, P. Wang, 2021. Effect of Freeze-Thaw Cycles on the Mechanical Properties of Polyacrylamide- and Lignocellulose-Stabilized Clay in Tibet. Advances in Materials Science and Engineering, Vol. 2021, No. 7723405, Pp. 16. DOI:10.1155/2021/7723405.

Shimobe S., Spagnoli G.A., 2022. General Overview on the Correlation of Compression Index of Clays with Some Geotechnical Index Properties. Geotechnical and Geological Engineering, Vol. 40, Pp. 311 – 324. DOI:10.1007/s10706-021-01888-8.

Suneel M., Kwon J., Im J.-C., Jeon C.W., 2010. Long-Term Consolidation and Strength Behavior of Marine Clay Improved with Fly Ash. Marine Georesources and Geotechnology, Vol. 28, Pp. 1 – 10. DOI: 10.1080/10641190903479031.

Tian M, Sheng X., 2020. CPT-Based Probabilistic Characterization of Un-drained Shear Strength of Clay. Hindawi. Advances in Civil Engineering, Vol. 2020, P. 1 15. DOI: https://doi.org/10.1155/2020/9617698.

Helle T. E., Aagaard P., Nordal S., Long M., Bazin S., 2019. Geochemical, mineralogical and geotechnical characterization of the low plastic, highly sensitive glaciomarine clay at Dragvoll, Norway. AIMS Geosciences, Vol. 5(4)., Pp. 704–722. DOI: 10.3934/geosci.2019.4.704/.

Шулятьев О.А., 2020. Снижение осадки фундамента за счет изменения напряженно-деформированного состояния основания путем инъекции твердеющего раствора. Вестник НИЦ «Строительство», Т. 26, № 3, С. 121 – 148.

Wang D. X., Wang H. W., Larsson S. et al., 2020. Effect of basalt fiber inclu-sion on the mechanical properties and microstructure of cement-solidified kaolinite. Construction and Building Materials, Vol. 241, No. 118085. 10.1016/j.conbuildmat.2020.118085.

Published

2023-06-22

Issue

Section

DESTRUCTION OF ROCKS AND THEIR MASSIVES DURING INTEGRATED DEVELOPMENT OF DEPOSIT