STUDY OF THE CONDITIONS FOR THE OCCURRENCE OF DYNAMIC MANIFESTATIONS OF ROCK PRESSURE AT THE YUZHNOYE DEPOSIT (PRIMORSKY KRAI) USING DIGITAL MODELS OF NATURAL-TECHNICAL SYSTEMS

Authors

  • Mikhail A. Lomov

Keywords:

geomechanics, rock pressure, state of stress, rock bursts, prediction, methods, control

Abstract

To prevent accidents in the extraction of minerals, it is necessary to timely identify areas where manifestations of rock pressure may occur, and to develop effective methods for managing the stress-strain state of the rock mass.

This work considers the Yuzhnoye deposit in the Primorsky Krai, which has been classified as dangerous due to rock bursts since 1986. The analysis of the nature of the occurrence of seismic acoustic events, based on the interpretation of seismic monitoring data of the automated rock pressure control system “Prognoz-ADS” and visual observations, was conducted in combination with the developed digital model of the natural-technical system of the deposit. As a result of the work, new data were obtained, which after additional research using the “Prognoz-ADS” system will help to establish the factors of shock hazard and develop the necessary complex of geomechanical measures to ensure the safety of mining operations at the lower deep horizons of the Yuzhnoye deposit.

The analysis of seismic acoustic monitoring data showed that the number of AE-events per day before the shocks increased one and a half times compared to the previous days. Mined out stope No. 1 between the level +440 and +480m, as well as the area where the mine workings intersect with the Eldorado fault zone and the Rudny fault in the area of mined out stope No. 2 and No. 3, were recognized as the most dangerous for rock bursts in the area of the geophone network.

The number of AE-events per day before the shocks increased one and a half times compared to the previous days. The shock hazard of the rock mass of the Yuzhnoye deposit depends more on anthropogenic impacts associated with the extraction of minerals than on climatic factors, which have a negligible influence. The influence of air temperature and climate in general on the number of manifestations of rock pressure without reference to the year is not traced. The distribution of shocks is on average the same every month. The highest activity is observed in June, July, and October.

References

Криницын Р.В., 2022. Напряженно-деформированное состояние массива горных пород при отработке месторождений Урала. Горная промышленность, № 5, С. 79-82. DOI 10.30686/1609-9192-2022-5-79-82.

Сидоров Д.В., Пономаренко Т.В., 2020. Методология оценки геодинамического состояния природно-техногенных систем при реализации проектов освоения месторождений. Горный журнал, № 1, С. 49-52. DOI 10.17580/gzh.2020.01.09.

Potapchuk M.I., Kursakin G.A., Sidlyar A.V., 2014. Improvement of safety of de-velopment of bump hazardous vein deposits of eastern primorye. Eurasian Mining, No. 1, P. 18-22.

Потапчук М.И., Курсакин Г.А., Сидляр А.В., 2013. Повышение безопасности разработки удароопасных жильных месторождений Восточного Приморья. Горный журнал, № 10, С. 30-34.

Ломов М.А., Сидляр А.В., Константинов А.В., Грунин А.П., 2023. Геомеханические проблемы отработки нижних горизонтов месторождения Южное (Приморский край). Горный информационно-аналитический бюллетень, № 12-2, С. 87-99. DOI: 10.25018/0236_1493_2023_122_0_87.

Lomov M., 2020. 3D modeling system of seismoacoustic monitoring results at the Nikolaevskoye field. E3S Web of Conferences: 8, Khabarovsk, 08–10 сентября 2020 года. Khabarovsk, P. 04008. DOI 10.1051/e3sconf/202019204008.

Ломов М.А., Сидляр А.В., 2021. Оценка факторов удароопасности Николаевского месторождения с помощью системы 3D моделирования результатов сейсмоакустического мониторинга. Проблемы недропользования, № 1(28), С. 64 – 72. DOI 10.25635/2313-1586.2021.01.064.

Kozyrev, A. A., Panin, V. I., Semenova, I. E., & Zhuravleva, O. G., 2018. Geody-namic safety of mining operations under rockburst-hazardous conditions in the Khibiny apa-tite deposits. Journal of Mining Science, 54(5), 734-743. doi:10.1134/S1062739118054832

Lovchikov A.V., 2013. Review of the strongest rockbursts and mining-induced earthquakes in Russia. Journal of Mining Science, 49(4), 572-575. doi:10.1134/S1062739149040072

Zhou J., Li X., & Mitri H. S., 2016. Classification of rockburst in underground projects: Comparison of ten supervised learning methods. Journal of Computing in Civil En-gineering, 30(5) doi:10.1061/(ASCE)CP.1943-5487.0000553.

Sun F., Fan J., Guo J., Shi X., Liu X., Zhu B. & Zhang H., 2021. Rockburst proneness criterion based on energy principle. [基于能量原理的岩爆倾向性判据] Gaoya Wuli Xuebao. Chinese Journal of High Pressure Physics, 35(3) doi:10.11858/gywlxb.20200650

He M., e Sousa L. R., Miranda T. & Zhu G., 2015. Rockburst laboratory tests database - application of data mining techniques. Engineering Geology, 185, 116-130. doi:10.1016/j.enggeo.2014.12.008

Published

2024-09-30

Issue

Section

GEOMECHANICS