APPLICATION OF CLUSTER ANALYSIS METHODS FOR IDENTIFYING ACOUSTIC ACTIVE ZONES

Authors

  • Alexander V. Konstantinov
  • Michail A. Lomov

DOI:

https://doi.org/10.25635/2313-1586.2025.01.078

Keywords:

geomechanics, seismoacoustic monitoring, cluster analysis, DBSCAN, seismoacoustic events, destruction focus, shock hazard, rock pressure

Abstract

The article presents the results of a study on the application of cluster analysis methods to identify acoustically active zones (AAZ) in hazardous mining sites. Data obtained using the "Prognoz-ADS" seismic-acoustic system were utilized to analyze destruction processes in the rock mass, which manifest as a high concentration of acoustic emission events. The primary analytical tool used was the DBSCAN algorithm, which allows for the identification of clusters with arbitrary shapes, considering the spatial and temporal characteristics of the events. To optimize the algorithm's parameters, the Davies-Bouldin Index was applied, enabling the determination of the optimal neighborhood radius (7 m) and the minimum number of neighbors (13). As a result of analyzing data from the Yuzhnoe deposit, 20 acoustically active zones were identified, representing areas of elevated rock pressure. The analysis of clusters based on their spatial and temporal characteristics enabled the exclusion of events related to localization errors and anthropogenic noise, as well as the identification of patterns in the development of destruction foci. The developed software and methodological tools ensure accurate identification of destruction zones, precise delineation boundaries, and monitoring of their evolution. This study's practical value stems from its ability to forecast and prevent hazardous dynamic manifestations of rock pressure. The identified zones are recommended for priority monitoring to minimize the risks of emergency situations. The proposed approach has demonstrated its versatility and can be applied to analyze seismic-acoustic data from other hazardous mining sites. This work highlights the importance of integrating modern clustering methods with geomechanical monitoring tools to enhance the safety of mining operations.

References

Козырев А.А., Семенова И.Э., Жукова С.А., Журавлева О.Г., 2022. Факторы изменения сейсмического режима и локализации опасных зон при крупномасштабном техногенном воздействии. Горная промышленность, № 6, С. 95-102. DOI 10.30686/ 1609-9192-2022-6-95-102.

Еременко А.А., Мулев С.Н., Штирц В.А., 2022. Мониторинг геодинамических явлений микросейсмическим методом при освоении удароопасных месторождений. Физико-технические проблемы разработки полезных ископаемых, № 1, С. 12–22. DOI 10.15372/FTPRPI20220102.

Gladyr A., Rasskazov M., Konstantinov A., Tereshkin A., 2019. Algorithm for calculating hazard areas of a rock massif based on geomechanical data. E3S Web of Confer-ences, Vol. 129, P. 01002. DOI 10.1051/e3sconf/201912901002.

Gladyr A.V., Tereshkin A.A., Rasskazov M.I., Konstantinov A.V., 2019. Application of probabilistic clustering analysis to rockburst hazard assessment of rock mass. IOP Conference series, Vol. 773, P. 012061. DOI 10.1088/1755-1315/773/1/012061.

Рассказов И.Ю., Федотова Ю.В., Аникин П.А. и др., 2023. Совершенствование методов и средств геомеханического мониторинга на основе цифровых технологий. Горная промышленность, № S5, С. 18-24. DOI 10.30686/1609-9192-2023-5S-18-24.

Семенова И.Э., Журавлева О.Г., Жукова С.А., 2023. О механизмах разрушения массива горных пород и закономерностях формирования опасных зон в окрестности элементов горной технологии. Горная промышленность, № S1, С. 69-74. DOI 10.30686/ 1609-9192-2023-S1-69-74.

Zhu Z., Jiang Z., Accornero F., Carpinteri A., 2024.Correlation between seismic activity and acoustic emission on the basis of in-situ monitoring. EGUsphere [preprint]. DOI 10.5194/egusphere-2024-688.

Mendecki M., Pakosz R., Wojtecki Ł., Zuberek W., 2021. Spatiotemporal analysis of elastic and inelastic deformations in roof-rocks from seismological observations. International Journal of Mining Science and Technology, Vol. 31, P. 241–251. DOI 10.1016/j.ijmst.2020.12.001.

Jain A., Murty M., Flynn P., 1999. Data clustering: A review. ACM Computing Surveys, Vol. 31, no. 3, P. 264–323.

Arthur D., Vassilvitskii S., 2006. How slow is the k-means method? Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, Sedona, Arizona, USA. New York, USA: Association for Computing Machinery, P. 144–153. DOI 10.1145/1137856.1137880.

Schubert E., Sander J., Ester M. et al., 2017. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Transactions on Database Systems, Vol. 42, no. 3, P. 1–21.

Davies D., Bouldin D., 1979. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-1, no. 2, P. 224–227. DOI 10.1109/TPAMI.1979.4766909.

Zhang W., 2023. An improved DBSCAN algorithm for hazard recognition of obstacles in unmanned scenes. Soft Computing, Vol. 27, P. 18585–18604.

Константинов А.В., Рассказов И.Ю., 2024. Разработка комплекса нейросетевых моделей для идентификации типа источника акустического излучения на удароопасном месторождении. Горный информационно-аналитический бюллетень, № 11, С. 23–36. DOI: 10.25018/0236_1493_2024_11_0_23.

Published

2025-04-14

Issue

Section

ENVIRONMENTAL PROBLEMS OF THE MINING INDUSTRIAL COMPLEX AND ENVIRONMENTAL USE