METHODS TO IMPROVE ACCURACY IN OPEN-PIT MINES PHOTOGRAMMETRY

Authors

  • Daniil N. Hasanov

DOI:

https://doi.org/10.25635/2313-1586.2025.01.135

Keywords:

photogrammetry, surveying, aerial photography, UAV, quadcopter, open-pit mining, GNSS equipment

Abstract

One of the mining surveying department tasks is to survey mining operations. Among various tools used in surveying, aerial photography with photogrammetric processing stands out. Use of aerial photography and photogrammetry is simplified due to the availability of unmanned aerial vehicles (UAVs) and modern software. The advantages of this method are large coverage and low labor costs. However, aerial photography still requires preliminary site placement and georeferencing of GCPs, which is time-consuming. This problem raises question about the search for methods that can reduce the number of GCPs necessary for the accurate building of a photogrammetric model.

The main goal of the research is to assess the impact of the number of GCPs on the UAV-based photogrammetric surveying accuracy in open-cut mining.

Based on the results of aerial photography, 13 photogrammetric models of the pit were generated. Each of them differs in the quantity and arrangement of used GCPs. Accuracy of the model was estimated using root means square errors (RMSE) of the control points coordinates. Elements of regression analysis were used to assess the relationship between errors and GCPs quantity. It is established that with an increase in the number of GCPs used in the processing, the RMSE values decrease. The smallest horizontal and vertical RMSEs were observed for the case with the largest number of GCPs and are 0.031 m and 0.028 m, respectively.

References

Гусев В.Н., Блищенко А.А., Санникова А.П., 2022. Исследование комплекса факторов, оказывающих влияние на погрешность реализации маркшейдерской съемки горных объектов с применением геодезического квадрокоптера. Записки Горного института, Т. 254, С. 173–179.

Liu Y., Han K., Rasdorf W., 2022. Assessment and Prediction of Impact of Flight Configuration Factors on UAS-Based Photogrammetric Survey Accuracy. Remote Sensing, Т. 14, №. 16, С. 4119.

James M.R., Robson S., 2014. Mitigating systematic error in topographic models derived from UAV and ground‐based image networks. Earth Surface Processes and Landforms, Т. 39, № 10, С. 1413–1420.

Przybilla H. J. et al., 2020. Interaction between direct georeferencing, control point configuration and camera self-calibration for RTK-based UAV photogrammetry. The Inter-national Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Т. 43., С. 485-492.

Štroner M. et al., 2021. Photogrammetry using UAV-mounted GNSS RTK: Georeferencing strategies without GCPs. Remote Sensing, Т. 13, №. 7, С. 1336.

Sanz‐Ablanedo E. et al., 2020. Reducing systematic dome errors in digital elevation models through better UAV flight design. Earth Surface Processes and Landforms, Т. 45, № 9, С. 2134-2147.

Senn J. A. et al., 2022. On‐site geometric calibration of RPAS mounted sensors for SfM photogrammetric geomorphological surveys. Earth Surface Processes and Landforms, Т. 47, № 6, С. 1615-1634.

Forlani G. et al., 2020. UAV block georeferencing and control by on-board gnss data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Т. 43, С. 9-16.

Nesbit P.R., Hubbard S.M., Hugenholtz C.H., 2022. Direct georeferencing UAV-SfM in high-relief topography: Accuracy assessment and alternative ground control strategies along steep inaccessible rock slopes. Remote Sensing, Т. 14, № 3, С. 490.

Dai W. et al., 2023. Enhancing UAV-SfM Photogrammetry for Terrain Modeling from the Perspective of Spatial Structure of Errors. Remote Sensing, Т. 15, № 17, С. 4305.

Teppati Losè L., Chiabrando F., Giulio Tonolo F., 2020. Boosting the timeliness of UAV large scale mapping. Direct georeferencing approaches: Operational strategies and best practices. ISPRS International Journal of Geo-Information, Т. 9, № 10, С. 578.

Famiglietti N. A. et al., 2021. A test on the potential of a low cost unmanned aerial vehicle RTK/PPK solution for precision positioning. Sensors, Т. 21, № 11, С. 3882.

Cledat E. et al., 2020. Mapping quality prediction for RTK/PPK-equipped micro-drones operating in complex natural environment. ISPRS Journal of Photogrammetry and Remote Sensing, Т. 167, С. 24-38.

Taddia Y., Stecchi F., Pellegrinelli A., 2020. Coastal mapping using DJI Phantom 4 RTK in post-processing kinematic mode. Drones, Т. 4, № 2, С. 9.

Liu X. et al., 2022. Accuracy assessment of a UAV direct georeferencing method and impact of the configuration of ground control points. Drones, Т. 6, № 2, С. 30.

Gomes Pessoa G. et al., 2021. Assessment of UAV-based digital surface model and the effects of quantity and distribution of ground control points. International Journal of Remote Sensing, Т. 42, № 1, С. 65–83.

Правила осуществления маркшейдерской деятельности: утв. Ростехнадзором 19.05.2023 : ввод. в действие с 01.09.2023. КонсультантПлюс: электрон. фонд правовой и норматив.-техн. информ. URL: https://www.consultant.ru/document/ cons_doc_LAW_ 448564/ (дата обращения: 22.12.2024)

Kameyama S., Sugiura K., 2021. Effects of differences in structure from motion software on image processing of unmanned aerial vehicle photography and estimation of crown area and tree height in forests. Remote Sensing, Т. 13, № 4, С. 626.

Casella V. et al., 2020. Accuracy assessment of a UAV block by different software packages, processing schemes and validation strategies. ISPRS International Journal of Geo-Information, Т. 9, № 3, С. 164.

ГОСТ Р 59562–2021 «Съемка аэрофототопографическая. Технические требования». Федеральное агентство по техническому регулированию и метрологии от 10 июня 2021 г. N 542-ст. Национальный стандарт Российской Федерации. Москва: Стандартинформ, 2021.

Jiménez-Jiménez S.I. et al., 2021. Digital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy. ISPRS International Journal of Geo-Information, Т. 10, № 5, С. 285.

Zimmerman T., Jansen K., Miller J., 2020. Analysis of UAS flight altitude and ground control point parameters on DEM accuracy along a complex, developed coastline. Remote Sensing, Т. 12, № 14, С. 2305.

Published

2025-04-14

Issue

Section

МЕТОДЫ ИССЛЕДОВАНИЙ