EFFICIENCY ANALYSIS OF ELECTROMAGNETIC HAMMER COOLING SYSTEMS
DOI:
https://doi.org/10.25635/2313-1586.2025.01.147Keywords:
electromagnetic hammer, power coil, thermal processes, modeling, equivalent current, simulation model, heat dissipation, heat flow, finite element analysisAbstract
The article presents an analysis of the efficiency of cooling systems for coils of an electromagnetic hammer having a metal body. The paper deals with various options for filling the free space between the surface of the coils and the housing: air, transformer oil, Silagerm-2113 compound and active cooling of coils with transformer oil in a closed circuit. Modeling of thermal processes was performed in the FEMM 4.2 finite element analysis program. It was found that active oil cooling has the highest efficiency. If it is impossible to organize one, the most effective option is to place a layer of Silagerm-2113 compound between the surface of the coils and the hammer body. At the same time, other parts of the structure have to be filled with transformer oil.
References
Газизов А.А., 2002. Увеличение нефтеотдачи неоднородных пластов на поздней стадии разработки. Москва: ООО «Недра-Бизнесцентр», 639 с.
Sheng J. J., Leonhardt B. and Azri N., 2015. Status of polymer-flooding technolo-gy, J. Can. Petr. Technol., Vol. 54, Issue 2, P. 116 – 126.
Bera A. and Babadagli T., 2015. Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review, Applied Energy, Vol. 151, P. 206 – 226.
Delamaide E., Bazin B., Rousseau D. and Degre G., 2014. Chemical EOR for heavy oil: The Canadian experience, SPE EOR Conference at oil and gas West Asia 2014: Driving integrated and innovative EOR, P. 566 – 596.
Esmaeilzadeh P., Sadeghi M. T., Fakhroueian Z., Bahramian A. and Norouzbeigi R., 2015. Wettability alteration of carbonate rocks from liquid-wetting to ultra gas-wetting using TiO2, SiO2 and CNT nanofluids containing fluorochemicfls, for enhanced gas recovery. J. Nat. Gas Sci. Eng., Vol. 26, P. 1294 – 1303.
Дыбленко В.П., Марчуков Е.Ю., Туфанов И.А. и др., 2012. Волновые технологии и их использование при разработке месторождений нефти с трудноизвлекаемыми запасами. Москва: РЕАН, 344 с.
Li Y., Shan H. and Huang S., 2018. Study on failure evolution process of fractured rock specimen under axial force. Proceedings - 10th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2018, vol. 2018-January, P. 387–390.
Al-Rawashdeh A.Y. and Pavlov V.E., 2024. Study of operating modes of electro-magnetic hammer with adjustable impact energy and blow frequency. International Journal of Power Electronics and Drive Systems (IJPEDS), Mar., vol. 15, no. 1, p. 64.
Wróblewski A., Krot P., Zimroz R., Mayer T. and Peltola J., 2023. Review of line-ar electric motor hammers—an energy-saving and eco-friendly solution in industry, Ener-gies, Jan., vol. 16, no. 2, Р. 959.
Бессонов Л.А., 2016. Теоретические основы электротехники. Электрические цепи: учебник для бакалавров. 12-е изд., исправ. и доп. Москва: Издательство Юрайт, 701 с.
Karimi G., Bhattacharya S., Gould R., Tremelling D., 2014.Thermomagnetic liquid cooling: A novel electric machine thermal management solution. 2014 IEEE Energy Conversion Congress and Exposition (ECCE). URL: https://www.proceedings.com/content /024/024070webtoc.pdf (дата обращения 2.03.2025)
Пат. 2642199 Российская Федерация, МПК Е21В23/01 (2006.01). Скважинный сейсмоисточник / Б. Ф. Симонов, Ю. В. Погарский, А. О. Кордубайло, Ю. А. Лебедев; заявитель и патентообладатель ПАО «СилэнСейсмоимпульс»; заявл. 19.04.2017; опубл. 24.01.2018; Бюл. № 3, 11 с.
David M., 2015. Finite Element Method Magnetics: User Manual, 160 p. URL: https://pdfslide.us/documents/finite-element-method-magnetics.html (дата обращения 5.03.2025)