METHOD OF DESIGNING SPECIALISED HYDROGEOCHEMICAL AND GIS-ORIENTED DATABASES
DOI:
https://doi.org/10.25635/2313-1586.2025.03.107Keywords:
GIS, DBMS, QGIS, Hydro GeoAnalyst, relational databases, data arrays, spatially distributed data, hydrogeochemistry, miningAbstract
The problem of storing data on the monitoring of the subsoil condition in the area of influence of mining enterprises is of great importance, since these data are used for the operational management of the mining process. Such data are heterogeneous: various tables and catalogs, graphic materials in the form of diagrams, maps, plans (both raster and vector) are accumulated. Using the example of monitoring the hydrosphere of a mining territory, a methodology for storing and processing hydrogeological monitoring data is given in the paper. Digital technologies are considered as the main approach to the implementation of the methodology. Database management systems (DBMS) act as the main repository of catalog and tabular data, and the use of geoinformation technologies allows you to use raster and vector data in the work. The article describes the methodology of interaction between a geographic information system (GIS) and a DBMS for storing, analyzing and interpreting data. Such interaction of software products allows you to receive predictive cartographic materials in an automated form. To create a DBMS, specialized software Hydro GeoAnalyst was tested. It has been established that the approach of joint use of DBMS and GIS allows obtaining quantitative and qualitative forecast estimates by optimizing the algorithm for interaction with data and reducing user labor costs.
References
1. Domdouzis K., Lake, P. 2021. Switzerland: Springer Cham, 400 p. DOI: 10.1007/978-3-030-42224-0
2. Jizhe Xia, Qunying Huang, Zhipeng Gui, Wei Tu, 2024. Open GIS. Switzerland: Springer Cham, 344 p. DOI: 10.1007/978-3-031-41748-1
3. Date C.J., 2019. Database Design and Relational Theory. Switzerland: Springer Cham, 451 p. DOI: 10.1007/978-1-4842-5540-7
4. Joseph S.P. Fong, Kenneth Wong Ting Yan, 2021. Information Systems Reengi-neering, Integration and Normalization. Switzerland: Springer Cham, 384 p. DOI: 10.1007/978-3-030-79584-9
5. Li F., Zhou X., Cai P., Zhang R., Huang G., Liu X., 2025. Database Development Milestones. Cloud Native Database. Singapore: Springer, P. 1-21. DOI: 10.1007/978-981-97-4057-4_1
6. Selvaraj S., 2024. Advanced Database Techniques and Optimization. Building Re-al-Time Marvels with Laravel. USA, Berkeley: Apress, P. 425–453. DOI: 10.1007/978-1-4842-9789-6_17
7. Hydro GeoAnalyst Environmental Data Management. URL: https://www.waterloohydrogeologic.com/products/hydro-geoanalyst (дата обращения: 22.07.2025)
8. Волк В.К., 2022. Базы данных. Проектирование, программирование, управление и администрирование. Учебник для вузов, 3-е изд., стер. Санкт-Петербург: Лань, 244 с.
9. Корнилков С.В., Рыбникова Л.С., Рыбников П.А., Смирнов А.Ю., 2022. Гео-информационный мониторинг для решения экологических задач горнопромышленных территорий Среднего Урала. Горная промышленность, № S1, С. 127-133. DOI: 10.30686/1609-9192-2022-1S-127-133
10. Корнилков С.В., Рыбников П.А., Рыбникова Л.С., 2025. Об основных направлениях взаимодополнения методов цифровизации и геоинформационного обеспечения горного производства. Известия высших учебных заведений. Геология и разведка, Т. 67, № 1, С. 76-85. DOI: 10.32454/0016-7762-2025-67-1-76-85
11. Яковлев В.Л., 2023. Обсуждение назревшей проблемы особенности современного периода исследований по проблемам комплексного освоения недр и развития минерально-сырьевой базы России. Проблемы недропользования, № 3(38), С. 21-34. DOI 10.25635/2313-1586.2023.03.021.


